
Brown Gold: The Smell of \$\$\$

Tom Cox: UW Ag&Applied Economics On behalf of UW Biomass R&D Initiative (BRDI) Project: <u>Accelerated Renewable Energy Consortium</u>

Presented to:

2013 National Dairy Producers Conference Mining Manure: An Economic Case for Nutrient Management April 7 - 9, 2013 • Indianapolis, IN, United States

INTRO (Conclusions!!!)

Extant and emerging separation technologies provide opportunities to "fractionate" this cellulosic feedstock into multiple value added products:

- Energy: methane gas, ethanol
- Intermediate chemical products: bio-butanol
- Mulch: peat moss substitute
- Organic fertilizers:
 - Concentrate and/or pelletized: high P and OM
 - Liquid ("tea water"): high N & K, Low P|OM, for fertigation
- <u>AND</u>: a variety of amino acids (proteins): "industrial" plastics feedstocks.

Dairy Farms = Cellulosic Feedstock <u>Bio-Refineries</u>!!!

Manure Separation → Bio-Refineries!!!

OUTLINE

I. Key Cellulosic Feedstock Challenges

- II. Manure Separation is KEY!!!
 - Key Functional Perspectives
 - Example: Polymer Based
 - Facilitates Value Added Bio-Feedstock Extraction
- III. Precision AG Manure Nutrient Management Planning (NMP)

Dairy Manure -> Brown

Gold!!!

- IV. Cellulosic based, bio-energy and biofeedstocks
- V. Wrap Up

Key Cellulosic Feedstock Challenges

Dairy Manure -> Brown

Gold!!!

Aggregate, Concentrate, and Homogenize

True of most "industrial process" feedstocks.

Food versus Fuel:
>LCA (Life Cycle Analysis)
>Carbon Footprint
>Displaced "rain forests"

Key Cellulosic Feedstock Challenges

Dairy Manure = Triple (*bio-chemical*) "Pre-Processed".

- 1) Ensile
- 2) Ruminate
- 3) Anaerobic Digestion

These "simple" biochemical/fermentation processes use less energy than many alternative refinery/separation processes....

Dairy Manure -> Brown

Gold!!!

Separation is KEY to Unlock Manure \$\$\$

Key Functional Perspectives 1) Liquids versus Solids Fractions Handling logistics/costs 2) <u>Nutrient Fractions</u> (NPK|OM) Ideally separate N from P. – Soluble N|K fractions: "tea waters" OM|P fractions: concentrates 3) Fiber Fractions (new) – SoilNet & BRDI Project

Large versus Small Fibers

Dairy Manure → Brown Gold!!!

Variability of Agitated Pit Manure

200 samples of Agitated Pit Manure (**CIG** Project):

- taken every 4 hours during application
- over 4 years
- On average N:P ratio is 2:1.
- Variability (coefficient of variation, CV) is 2.5X higher for P than N.

SUMMARY: 1st and 2ND YEAR MANURE NUTRIENT COMPOSITION AS APPLIED (Pounds/1,000 Gallons)

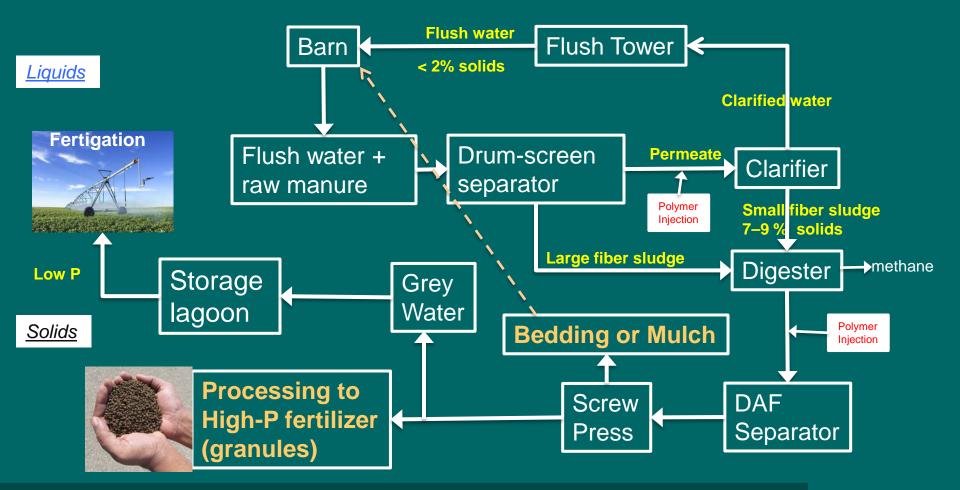
AVERAGE	DM	N	Ρ	К	S
2006	3.5	8.1	4.4	13.4	1.4
2007	3.3	6.9	3.4	13.9	0.8
2008	2.7	7.0	3.5	11.6	0.7
2009	2.2	7.0	3.1	14.2	0.5
2006-2009 AVG	2.9	7.2	3.6	13.3	0.9
Coefficient of Variation	DM	N	Ρ	K	S
	DM 36%	N 16%	P 44%	K 17%	S 25%
Variation			-		
Variation 2006	36%	16%	44%	17%	25%
Variation 2006 2007	36% 43%	16% 21%	44% 56%	17% 22%	25% 36%

Blue – Above Average Red – Below Average

Manure Separation: Agitated Pit

Manure Processing (Separation) Can Reduce Environmental Risk

- Partition manure into high and low P fractions
 - Apply low P fraction (permeate) on high soil test P fields
 - High P fraction (concentrate) for low-P or distant fields
- Better control of environmental impacts:
 - More nutrient consistency for better nutrient management, particularly N
 - Distributing nutrients over full growing season, in *small doses* via "<u>fertigation</u>" with high N/low P liquid fraction


<u>versus</u>

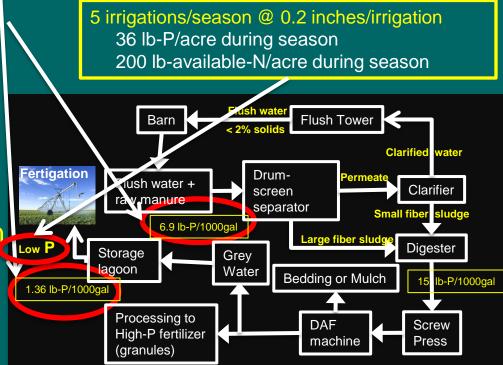
large single quantities at potentially risky Spring and Fall periods

- Less over-the-road manure hauling
- Fewer lagoons needed

Manure Separation

Manure Separation: Polymer-Based

the land of the local distance in all the second second second second second second second second second second


50

Manure Separation: Polymer-Based

Manure Processing (Separation) Can Reduce This Environmental Risk

• P Concentration Flow Diagram (lab results)

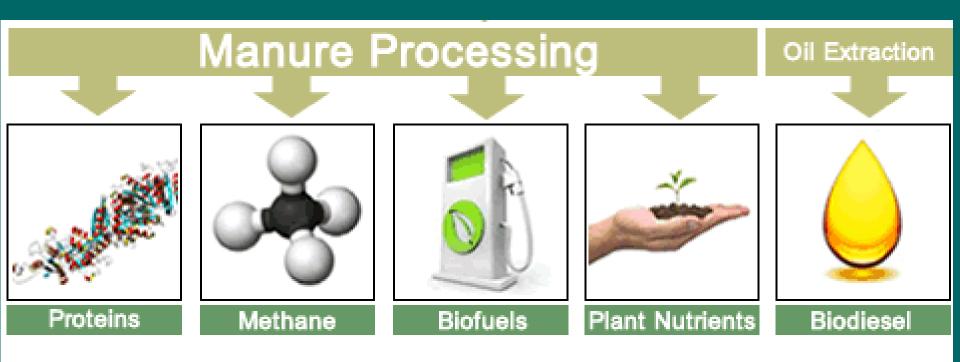
- After clarifier: 1.36 lb-P/1000 gal
- Raw manure: 6.9 lb-P/1000 gal
- One irrigation of 0.2 inches will wet a soil to a depth of 1 to 1.5 inches in a silty clay loam soil.
- At average evapotranspiration rate of 0.12 inches/day, <u>this</u> <u>water will be evaporated or</u> <u>transpired in about 2 days</u>.

• No runoff if 1/5" applied over 10 minutes or more

Manure Separation: Polymer-Based

Cellulosic Based, Bioenergy and Bio-Feedstocks

• <u>Bioenergy</u>:

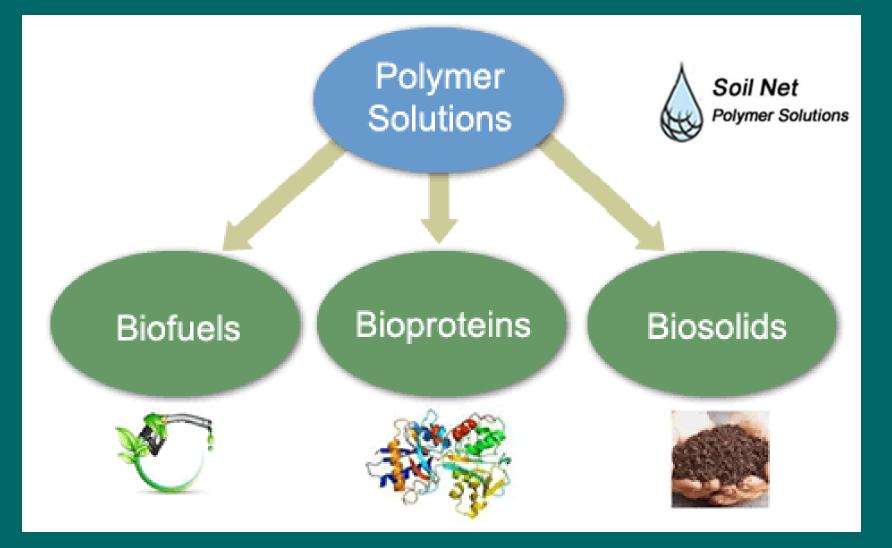

- bio-ethanol, methane (electricity <u>and</u> heat)
- BRDI Project (oilseeds): bio-diesel/SVO
- Intermediate Chemicals:
 - bio-butanol, proteins/amino acids (plastics)

Dairy Manure -> Brown

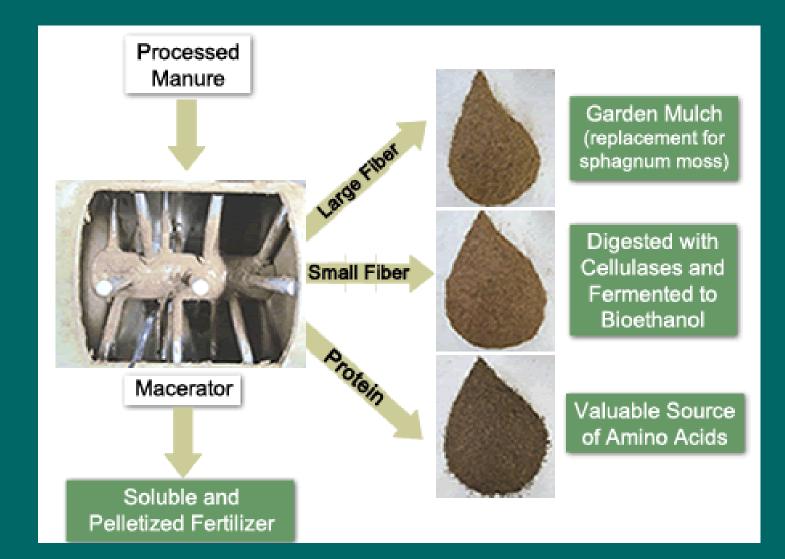
Gold!!!

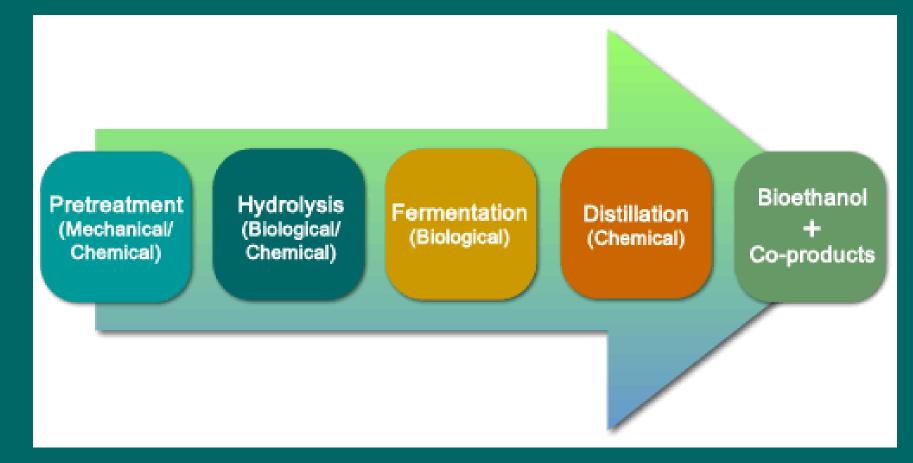
- **Bio-Fertilizers**:
 - mulches & pelletS

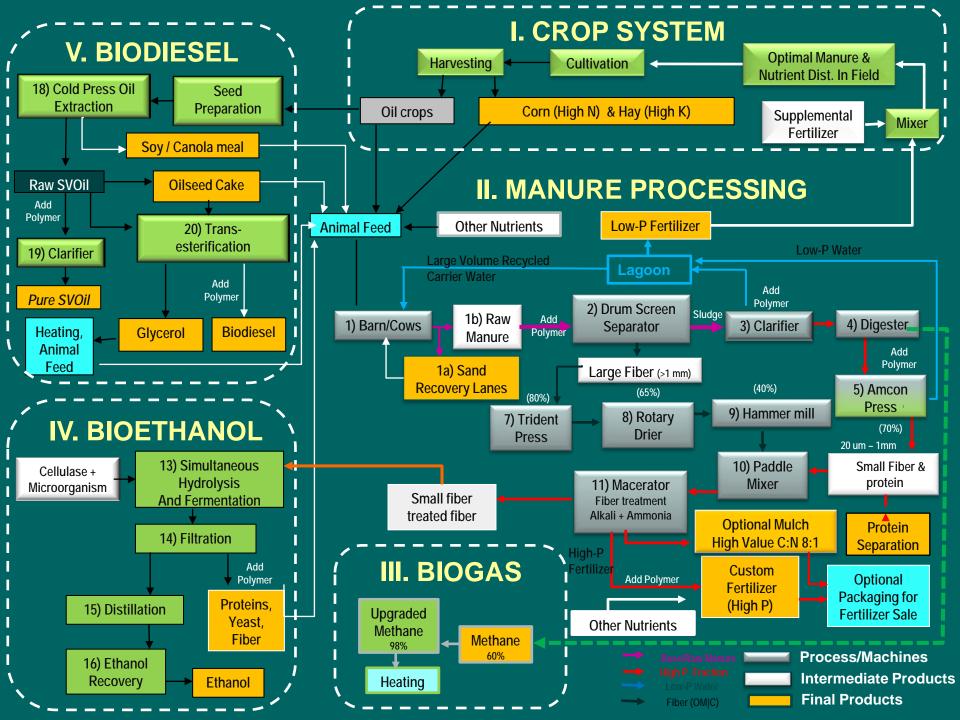
Cellulosic Based, Bioenergy and Bio-Feedstocks



500


Children and the state of the strength of the


AREC USES SOIL NET'S POLYMER TECHNOLOGY



AREC TESTS WAYS OF CONVERTING MANURE TO VALUABLE COMMODITIES

BIOETHANOL PRODUCTION FROM SMALL MANURE FIBER

Wrap Up

Biofeedstocks (dairy manure) from US crucial dairy sector provide multiple <u>economic/environmental</u> <u>challenges and</u> <u>opportunities</u> to "Grow the Green Economy".

- This biofeedstock shares fundamental (and relatively low cost) biochemical processing – <u>fermentation</u> – with several classical WI Ag products:
 - beer, cheese and kraut.
- <u>Triple fermentation</u>:1) dairy feed rations (corn/alfalfa silage, haylage, etc.), 2) the cow's rumen, and 3) anaerobic digestion of manure.

Provides an aggregated, concentrated and homogenized and (bio-chemically) "pre-processed" (low cost/under valued) <u>cellulosic feedstock</u>

 One that largely avoids the <u>food/fuel issues</u> associated with many 1st and 2nd generation bio-feedstocks.

Dairy Manure -> Brown

Gold

Wrap Up

Extant and emerging <u>separation technologies</u> provide opportunities to "<u>fractionate</u>" this <u>cellulosic</u> <u>feedstock</u> into multiple <u>value added</u> bio-products:

- Energy: methane gas, ethanol
- Intermediate chemical products: bio-butanol
- Mulch: peat moss substitute
- Organic fertilizers:
 - Concentrate and/or pelletized: high P and OM
 - Liquid ("tea water"): high N & K, Low P|OM, for fertigation
- <u>AND</u>: a variety of amino acids (proteins): "industrial" plastics feedstocks.

Dairy Farms = Cellulosic Feedstock <u>Bio-Refineries</u>!!!

Manure Separation → Bio-Refineries!!!

CONCLUSIONS

These value added opportunities enhance sustainability

 <u>Economic</u>: increase value-added product sales/revenues and decrease costs via onfarm substitution and increased nutrient use efficiency.

<u>and</u>

 <u>Environmental</u>: improved carbon footprint/GHG remediation, reduced nutrient variability, increased Precision Ag and reduced environmental (soil, nutrient, GHG) losses.

"Triple Bottom Line"

CONCLUSIONS

This provides the fundamental sustainability foundations for:

Economic/Environmental Win-Win

and

Growing the Local Green Economy

 Local manufacturing of the separation technology and growth in associated bio-feedstock processing.

"Triple Bottom Line"

ARE CONSORTIUM

Accelerated Renewable Energy Consortium

DOE/USDA Biomass R&D Initative Funding:

- \$7M Feds
- \$1.7M Private "Matching"
- **Private Collaborators:**

Key Technology Partners: SoilNet: Polymer and Maceration IP. Braun Electric: Installation, Management. FEECO: Machine/Process Manufacturing Key Dairy Farm Partners: Maple Leaf Dairy, Larson Acres, Cottonwood, others.